Maple 2018. 2 Integration Test Results
on the problems in "5 Inverse trig functions/5.5 Inverse secant"
Test results for the 48 problems in "5.5.1 u (a+b arcsec (c x))^n.txt"
Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arcsec}(c x)}{x^{3}} d x
$$

Optimal (type 3, 46 leaves, 4 steps):

$$
-\frac{b c^{2} \operatorname{arccsc}(c x)}{4}+\frac{-a-b \operatorname{arcsec}(c x)}{2 x^{2}}+\frac{b c \sqrt{1-\frac{1}{c^{2} x^{2}}}}{4 x}
$$

Result(type 3, 117 leaves):

$$
-\frac{a}{2 x^{2}}-\frac{b \operatorname{arcsec}(c x)}{2 x^{2}}-\frac{c b \sqrt{c^{2} x^{2}-1} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right)}{4 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}+\frac{c b}{4 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}-\frac{b}{4 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x^{3}}}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int x^{3}(a+b \operatorname{arcsec}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 93 leaves, 5 steps):

$$
\frac{b^{2} x^{2}}{12 c^{2}}+\frac{x^{4}(a+b \operatorname{arcsec}(c x))^{2}}{4}+\frac{b^{2} \ln (x)}{3 c^{4}}-\frac{b x(a+b \operatorname{arcsec}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{3 c^{3}}-\frac{b x^{3}(a+b \operatorname{arcsec}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{6 c}
$$

Result(type 3, 207 leaves):

$$
\begin{aligned}
& \frac{x^{4} a^{2}}{4}+\frac{b^{2} \operatorname{arcsec}(c x)^{2} x^{4}}{4}-\frac{b^{2} \operatorname{arcsec}(c x) \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x^{3}}{6 c}+\frac{b^{2} x^{2}}{12 c^{2}}-\frac{b^{2} \operatorname{arcsec}(c x) x \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}{3 c^{3}}-\frac{b^{2} \ln \left(\frac{1}{c x}\right)}{3 c^{4}}+\frac{a b x^{4} \operatorname{arcsec}(c x)}{2} \\
& -\frac{a b x^{3}}{6 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{a b x}{6 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac{a b}{3 c^{5} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int x^{2}(a+b \operatorname{arcsec}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 4, 167 leaves, 8 steps):

$$
\begin{aligned}
\frac{b^{2} x}{3 c^{2}} & +\frac{x^{3}(a+b \operatorname{arcsec}(c x))^{2}}{3}+\frac{2 \mathrm{I} b(a+b \operatorname{arcsec}(c x)) \arctan \left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}-\frac{\mathrm{I} b^{2} \operatorname{poly} \log \left(2,-\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{3 c^{3}} \\
& +\frac{\mathrm{I} b^{2} \operatorname{polylog}\left(2, \mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{3 c^{3}}-\frac{b x^{2}(a+b \operatorname{arcsec}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{3 c}
\end{aligned}
$$

Result(type 4, 342 leaves):

$$
\begin{aligned}
& \frac{x^{3} a^{2}}{3}+\frac{x^{3} b^{2} \operatorname{arcsec}(c x)^{2}}{3}-\frac{b^{2} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} \operatorname{arcsec}(c x) x^{2}}{3 c}+\frac{b^{2} x}{3 c^{2}}+\frac{b^{2} \operatorname{arcsec}(c x) \ln \left(1+\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{3 c^{3}} \\
& -\frac{b^{2} \operatorname{arcsec}(c x) \ln \left(1-\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{3 c^{3}}-\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(1+\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{3 c^{3}}+\frac{\mathrm{I} b^{2} \operatorname{dilog}\left(1-\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{3 c^{3}} \\
& +\frac{2 x^{3} a b \operatorname{arcsec}(c x)}{3}-\frac{a b x^{2}}{3 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac{a b}{3 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{a b \sqrt{c^{2} x^{2}-1} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{3 c^{4} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x}}
\end{aligned}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int x(a+b \operatorname{arcsec}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 52 leaves, 4 steps):

$$
\frac{x^{2}(a+b \operatorname{arcsec}(c x))^{2}}{2}+\frac{b^{2} \ln (x)}{c^{2}}-\frac{b x(a+b \operatorname{arcsec}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{c}
$$

Result(type 3, 133 leaves):

$$
\frac{x^{2} a^{2}}{2}+\frac{b^{2} x^{2} \operatorname{arcsec}(c x)^{2}}{2}-\frac{b^{2} \operatorname{arcsec}(c x) x \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}{c}-\frac{b^{2} \ln \left(\frac{1}{c x}\right)}{c^{2}}+a b x^{2} \operatorname{arcsec}(c x)-\frac{a b x}{c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac{a b}{c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arcsec}(c x))^{2}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 3, 116 leaves, 5 steps):
$\frac{b^{2}}{32 x^{4}}+\frac{3 b^{2} c^{2}}{32 x^{2}}+\frac{3 a b c^{4} \operatorname{arcsec}(c x)}{16}+\frac{3 b^{2} c^{4} \operatorname{arcsec}(c x)^{2}}{32}-\frac{(a+b \operatorname{arcsec}(c x))^{2}}{4 x^{4}}+\frac{b c(a+b \operatorname{arcsec}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{8 x^{3}}$

$$
+\frac{3 b c^{3}(a+b \operatorname{arcsec}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{16 x}
$$

Result(type 3, 264 leaves):

$$
\begin{aligned}
&-\frac{a^{2}}{4 x^{4}}-\frac{b^{2} \operatorname{arcsec}(c x)^{2}}{4 x^{4}}+\frac{3 b^{2} c^{4} \operatorname{arcsec}(c x)^{2}}{32}+\frac{3 c^{3} b^{2} \operatorname{arcsec}(c x) \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}{16 x}+\frac{c b^{2} \operatorname{arcsec}(c x) \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}{8 x^{3}} \\
&-\frac{3 c^{3} a b \sqrt{c^{2} x^{2}-1} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right)}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}+\frac{3 c^{3} a b}{32 x^{4}}+\frac{3 b^{2} c^{2}}{32 x^{2}}-\frac{a b \operatorname{arcsec}(c x)}{2 x^{4}} \\
&-\frac{c a b}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}-\frac{a b}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x^{3}}-8 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x^{5}
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arcsec}(c x))^{3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 76 leaves, 5 steps):

$$
\frac{6 b^{2}(a+b \operatorname{arcsec}(c x))}{x}-\frac{(a+b \operatorname{arcsec}(c x))^{3}}{x}-6 b^{3} c \sqrt{1-\frac{1}{c^{2} x^{2}}}+3 b c(a+b \operatorname{arcsec}(c x))^{2} \sqrt{1-\frac{1}{c^{2} x^{2}}}
$$

Result(type 3, 197 leaves):
$c\left(-\frac{a^{3}}{c x}+b^{3}\left(-\frac{\operatorname{arcsec}(c x)^{3}}{c x}+3 \operatorname{arcsec}(c x)^{2} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}-6 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}+\frac{6 \operatorname{arcsec}(c x)}{c x}\right)+3 a b^{2}\left(-\frac{\operatorname{arcsec}(c x)^{2}}{c x}+\frac{2}{c x}\right.\right.$

$$
\left.\left.+2 \operatorname{arcsec}(c x) \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}\right)+3 a^{2} b\left(-\frac{\operatorname{arcsec}(c x)}{c x}+\frac{c^{2} x^{2}-1}{\sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} c^{2} x^{2}}\right)\right)
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{3}(a+b \operatorname{arcsec}(c x)) \mathrm{d} x
$$

Optimal(type 3, 147 leaves, 11 steps):
$\frac{b d^{4} \operatorname{arccsc}(c x)}{4 e}+\frac{(e x+d)^{4}(a+b \operatorname{arcsec}(c x))}{4 e}-\frac{b d\left(2 c^{2} d^{2}+e^{2}\right) \operatorname{arctanh}\left(\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{2 c^{3}}-\frac{b e\left(9 c^{2} d^{2}+e^{2}\right) x \sqrt{1-\frac{1}{c^{2} x^{2}}}-\frac{b d e^{2} x^{2}}{6 c^{3}}-\frac{1}{c^{2} x^{2}}}{2 c}$

$$
-\frac{b e^{3} x^{3} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{12 c}
$$

Result(type 3, 485 leaves):
$\frac{a e^{3} x^{4}}{4}+a e^{2} x^{3} d+\frac{3 a e x^{2} d^{2}}{2}+a x d^{3}+\frac{a d^{4}}{4 e}+\frac{b e^{3} \operatorname{arcsec}(c x) x^{4}}{4}+b e^{2} \operatorname{arcsec}(c x) x^{3} d+\frac{3 b e \operatorname{arcsec}(c x) x^{2} d^{2}}{2}+b \operatorname{arcsec}(c x) x d^{3}+\frac{b \operatorname{arcsec}(c x) d^{4}}{4 e}$

$$
\begin{aligned}
& +\frac{b \sqrt{c^{2} x^{2}-1} d^{4} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right)}{4 c e \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x}}-\frac{b \sqrt{c^{2} x^{2}-1} d^{3} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{c^{2} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}-\frac{b e^{3} x^{3}}{12 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b e^{3} x}{12 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}-\frac{b e^{2} d x^{2}}{2 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}} \\
& +\frac{b e^{2} d}{2 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{3 b e x d^{2}}{2 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac{3 b e d^{2}}{2 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}-\frac{b e^{2} \sqrt{c^{2} x^{2}-1} d \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{2 c^{4} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x}}+\frac{b e^{3}}{6 c^{5} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x}}
\end{aligned}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(e x^{2}+d\right)(a+b \operatorname{arcsec}(c x)) d x
$$

Optimal(type 3, 139 leaves, 6 steps):

$$
\frac{d x^{3}(a+b \operatorname{arcsec}(c x))}{3}+\frac{e x^{5}(a+b \operatorname{arcsec}(c x))}{5}-\frac{b\left(20 c^{2} d+9 e\right) x \operatorname{arctanh}\left(\frac{c x}{\sqrt{c^{2} x^{2}-1}}\right)}{120 c^{4} \sqrt{c^{2} x^{2}}}-\frac{b\left(20 c^{2} d+9 e\right) x^{2} \sqrt{c^{2} x^{2}-1}}{120 c^{3} \sqrt{c^{2} x^{2}}}-\frac{b e x^{4} \sqrt{c^{2} x^{2}-1}}{20 c \sqrt{c^{2} x^{2}}}
$$

Result(type 3, 281 leaves):

$$
\begin{aligned}
& \frac{a e x^{5}}{5}+\frac{a x^{3} d}{3}+\frac{b \operatorname{arcsec}(c x) e x^{5}}{5}+\frac{b \operatorname{arcsec}(c x) x^{3} d}{3}-\frac{b x^{4} e}{20 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b x^{2} e}{40 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b d x^{2}}{6 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac{b d}{6 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}} \\
& -\frac{b \sqrt{c^{2} x^{2}-1} d \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{6 c^{4} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}+\frac{3 b e}{40 c^{5} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{3 b \sqrt{c^{2} x^{2}-1} e \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{40 c^{6} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x}}
\end{aligned}
$$

[^0]$$
\int x^{2}\left(e x^{2}+d\right)^{2}(a+b \operatorname{arcsec}(c x)) \mathrm{d} x
$$

Optimal(type 3, 222 leaves, 7 steps):
$\frac{d^{2} x^{3}(a+b \operatorname{arcsec}(c x))}{3}+\frac{2 d e x^{5}(a+b \operatorname{arcsec}(c x))}{5}+\frac{e^{2} x^{7}(a+b \operatorname{arcsec}(c x))}{7}-\frac{b\left(280 c^{4} d^{2}+252 c^{2} d e+75 e^{2}\right) x \operatorname{arctanh}\left(\frac{c x}{\sqrt{c^{2} x^{2}-1}}\right)}{1680 c^{6} \sqrt{c^{2} x^{2}}}$

$$
-\frac{b\left(280 c^{4} d^{2}+252 c^{2} d e+75 e^{2}\right) x^{2} \sqrt{c^{2} x^{2}-1}}{1680 c^{5} \sqrt{c^{2} x^{2}}}-\frac{b e\left(84 c^{2} d+25 e\right) x^{4} \sqrt{c^{2} x^{2}-1}}{840 c^{3} \sqrt{c^{2} x^{2}}}-\frac{b e^{2} x^{6} \sqrt{c^{2} x^{2}-1}}{42 c \sqrt{c^{2} x^{2}}}
$$

Result(type 3, 493 leaves):

$$
\begin{aligned}
& \frac{a e^{2} x^{7}}{7}+\frac{2 a d e x^{5}}{5}+\frac{a d^{2} x^{3}}{3}+\frac{b \operatorname{arcsec}(c x) e^{2} x^{7}}{7}+\frac{2 b \operatorname{arcsec}(c x) d e x^{5}}{5}+\frac{b \operatorname{arcsec}(c x) d^{2} x^{3}}{3}-\frac{b x^{6} e^{2}}{42 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b x^{4} e^{2}}{168 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}} \\
& -\frac{b x^{4} d e}{10 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b x^{2} d e}{20 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b d^{2} x^{2}}{6 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac{b d^{2}}{6 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b \sqrt{c^{2} x^{2}-1} d^{2} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{6 c^{4} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x} x}-\frac{5 b x^{2} e^{2}}{336 c^{5} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}} \\
& +\frac{3 b d e}{20 c^{5} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{3 b \sqrt{c^{2} x^{2}-1} d e \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{20 c^{6} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}+\frac{5 b e^{2}}{112 c^{7} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{5 b \sqrt{c^{2} x^{2}-1} e^{2} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{112 c^{8} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x}}
\end{aligned}
$$

Problem 26: Result is not expressed in closed-form.

$$
\int \frac{x^{2}(a+b \operatorname{arcsec}(c x))}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 548 leaves, 25 steps):
$\frac{x(a+b \operatorname{arcsec}(c x))}{e}-\frac{b \operatorname{arctanh}\left(\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{c e}+\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{2 e^{3 / 2}}$
$-\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{\left.c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}\right)}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{2 e^{3 / 2}}+\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{2 e^{3 / 2}}$

$$
\begin{aligned}
& -\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{2 e^{3 / 2}}+\frac{\mathrm{I} b \operatorname{polylog}\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{2 e^{3 / 2}} \\
& -\frac{\mathrm{I} b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{2 e^{3 / 2}}+\frac{\mathrm{I} b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{2 e^{3 / 2}} \\
& -\frac{\mathrm{I} b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{2 e^{3 / 2}}
\end{aligned}
$$

Result(type 7, 373 leaves):

$$
\begin{aligned}
& \frac{a x}{e}-\frac{a d \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{e \sqrt{d e}}+\frac{b \operatorname{arcsec}(c x) x}{e}+\frac{1}{8 e^{2}}(\mathrm{I} c b d \\
& \sum_{_^{R I}=\operatorname{RootOf}\left(c^{2} d_{Z^{4}}+\left(2 c^{2} d+4 e\right) Z^{Z}+c^{2} d\right)} \\
& \frac{\left(_R l^{2} c^{2} d+c^{2} d+4 e\right)(\operatorname{Iarcsec}(c x) \ln (\frac{-R 1-\frac{1}{c x}-\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{\underbrace{}_{-}})+\operatorname{dilog}\left(\frac{-R 1-\frac{1}{c x}-\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{R 1}\right))}{\left.__{-R 1\left(_R l^{2} c^{2} d+c^{2} d+2 e\right)}^{R 1}\right)} \\
& +\frac{2 \mathrm{I} b \arctan \left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{c e}-\frac{1}{8 e^{2}}(\mathrm{I} c b d \\
& \sum_{_^{R I}=\operatorname{RootOf}\left(c^{2} d_{-} Z^{4}+\left(2 c^{2} d+4 e\right) Z^{2}+c^{2} d\right)}
\end{aligned}
$$

Problem 27: Result is not expressed in closed-form.

$$
\int \frac{x(a+b \operatorname{arcsec}(c x))}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 550 leaves, 26 steps):
$-\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)^{2}\right)}{e}+\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{2 e}$

$$
+\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{2 e}+\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{2 e}
$$

$$
+\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{2 e}+\frac{\mathrm{I} b \operatorname{polylog}\left(2,-\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)^{2}\right)}{2 e}
$$

$$
-\frac{\operatorname{I} b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{2 e}-\frac{\mathrm{I} b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{2 e}
$$

$$
-\frac{\mathrm{I} b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{2 e}-\frac{\mathrm{I} b \operatorname{polylog}\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{2 e}
$$

Result(type 7, 452 leaves):
$\frac{a \ln \left(c^{2} e x^{2}+c^{2} d\right)}{2 e}$

$$
-\frac{1}{4 e}\left(\mathrm{I} c^{2} b d\right)
$$

$$
-\frac{b \operatorname{arcsec}(c x) \ln \left(1+\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{e}-\frac{b \operatorname{arcsec}(c x) \ln \left(1-\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{e}+\frac{\mathrm{I} b \operatorname{dilog}\left(1+\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{\left.1-\frac{1}{c^{2} x^{2}}\right)}\right)\right.}{e}
$$

$$
+\frac{\mathrm{I} b \operatorname{dilog}\left(1-\mathrm{I}\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)\right)}{e}-\frac{1}{4 e}(\mathrm{I} b
$$

$\sum_{_^{R I}=\operatorname{RootOf}\left(c^{2} d_{-} Z^{4}+\left(2 c^{2} d+4 e\right) Z^{2}+c^{2} d\right)}$

Problem 28: Result is not expressed in closed-form.

$$
\int \frac{x^{4}(a+b \operatorname{arcsec}(c x))}{\left(e x^{2}+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 742 leaves, 51 steps):
$\frac{x(a+b \operatorname{arcsec}(c x))}{e^{2}}-\frac{b \operatorname{arctanh}\left(\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{c e^{2}}+\frac{3(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{4 e^{5 / 2}}$

$$
\begin{aligned}
& -\frac{3(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{\left.c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}\right)}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{4 e^{5 / 2}}+\frac{3(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4 e^{5 / 2}} \\
& -\frac{3(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{4 e^{5 / 2}}+\frac{3 \mathrm{I} b \operatorname{polylog}\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{4 e^{5 / 2}} \\
& -\frac{3 \mathrm{I} b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{4 e^{5 / 2}}+\frac{3 \mathrm{I} b \operatorname{polylog}\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{4 e^{5 / 2}} \\
& -\frac{3 \mathrm{I} b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{-d}}{4 e^{5 / 2}}-\frac{d(a+b \operatorname{arcsec}(c x))}{4 e^{2}\left(-\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}+\frac{d(a+b \operatorname{arcsec}(c x))}{4 e^{2}\left(\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)} \\
& -\frac{b \operatorname{arctanh}\left(\frac{c^{2} d-\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d+e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right) \sqrt{d}}{4 e^{2} \sqrt{c^{2} d+e}}-\frac{b \operatorname{arctanh}\left(\frac{c^{2} d+\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d+e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right) \sqrt{d}}{4 e^{2} \sqrt{c^{2} d+e}}
\end{aligned}
$$

Result(type 7, 1886 leaves):

$$
\begin{aligned}
& \frac{a x}{e^{2}}+\frac{c^{2} a d x}{2 e^{2}\left(c^{2} e x^{2}+c^{2} d\right)}-\frac{3 a d \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{2 e^{2} \sqrt{d e}}+\frac{c^{2} b x^{3} \operatorname{arcsec}(c x)}{\left(c^{2} e x^{2}+c^{2} d\right) e}+\frac{3 c^{2} b \operatorname{arcsec}(c x) d x}{2 e^{2}\left(c^{2} e x^{2}+c^{2} d\right)} \\
&+ \frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\left.\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}\right) \sqrt{e\left(c^{2} d+e\right)}}\right.}{c^{4} e\left(c^{2} d+e\right) d^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}}{c^{4} e^{2} d^{2}}+\frac{2 \mathrm{I} b \arctan \left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{c e^{2}} \\
& +\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right)}{2 c^{2} e^{2} d} \\
& -\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right)}{(} \\
& -\frac{\mathrm{I} b \sqrt{-\left(c^{2} d-2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \operatorname{arctanh}\left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\left.\sqrt{\left(-c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}-2 e\right) d}\right)} \sqrt{e\left(c^{2} d+e\right)}\right.}{c^{4} e\left(c^{2} d+e\right) d^{2}}+\frac{1}{16 e^{3}}(3 \mathrm{I} c b d)(
\end{aligned}
$$

$\sum_{_^{R} I=\operatorname{RootOf}\left(c^{2} d_{-} Z^{4}+\left(2 c^{2} d+4 e\right) \quad Z^{2}+c^{2} d\right)}$
$\left.\frac{\left(_R l^{2} c^{2} d+c^{2} d+4 e\right)\left(\operatorname{Iarcsec}(c x) \ln \left(\frac{-R 1-\frac{1}{c x}-\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{\sim R 1}\right)+\operatorname{dilog}\left(\frac{-R 1-\frac{1}{c x}-\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{R 1}\right)\right)}{-R 1\left(_R 1^{2} c^{2} d+c^{2} d+2 e\right)}\right)$
$+\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right)}{c^{4} e d^{2}}$

Problem 29: Result is not expressed in closed-form.

$$
\int \frac{x^{2}(a+b \operatorname{arcsec}(c x))}{\left(e x^{2}+d\right)^{2}} d x
$$

Optimal(type 4, 708 leaves, 27 steps):

$$
+\frac{\mathrm{I} b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{4 e^{3 / 2 \sqrt{-d}}}-\frac{\mathrm{I} b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{4 e^{3 / 2} \sqrt{-d}}
$$

$$
+\frac{\mathrm{I} b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4 e^{3 / 2} \sqrt{-d}}-\frac{\mathrm{I} b \operatorname{polylog}\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4 e^{3 / 2} \sqrt{-d}}+\frac{a+b \operatorname{arcsec}(c x)}{4 e\left(-\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}
$$

$$
\begin{aligned}
& \frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{4 e^{3 / 2} \sqrt{-d}}-\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{4 e^{3 / 2} \sqrt{-d}} \\
& +\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4 e^{3 / 2 \sqrt{-d}}}-\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4 e^{3 / 2} \sqrt{-d}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{_^{R I}=\operatorname{RootOf}\left(c^{2} d_{Z^{4}}+\left(2 c^{2} d+4 e\right) Z^{2}+c^{2} d\right)} \\
& \left.\left.\frac{\left(_R l^{2} c^{2} d+4_{-} R l^{2} e+c^{2} d\right)\left(\operatorname{Iarcsec}(c x) \ln \left(\frac{-R 1-\frac{1}{c x}-\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{c}\right)+\operatorname{di\operatorname {log}(\frac {-R1-\frac {1}{cx}-\mathrm {I}\sqrt {1-\frac {1}{c^{2}x^{2}}}}{R}))}\right.}{-R 1\left(_R l^{2} c^{2} d+c^{2} d+2 e\right)}\right)\right)
\end{aligned}
$$

Result(type 7, 1755 leaves):

$$
\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}
$$

$$
+\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right) e}{c^{4}\left(c^{2} d+e\right) d^{3}}
$$

$$
\begin{aligned}
& -\frac{c^{2} a x}{2 e\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{a \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{2 e \sqrt{d e}}-\frac{c^{2} b \operatorname{arcsec}(c x) x}{2 e\left(c^{2} e x^{2}+c^{2} d\right)} \\
& +\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}}{c^{4} e d^{3}} \\
& -\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right)}{} \\
& 2 c^{2} e d^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}}{c^{4}\left(c^{2} d+e\right) d^{3}} \\
& -\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right)}{c^{4} d^{3}} \\
& -\frac{\mathrm{I} b \sqrt{-\left(c^{2} d-2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \operatorname{arctanh}\left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(-c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}-2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}}{c^{4} e d^{3}} \\
& +\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right)}{c^{2}\left(c^{2} d+e\right) d^{2}} \\
& +\frac{\mathrm{I} b \sqrt{-\left(c^{2} d-2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \operatorname{arctanh}\left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(-c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}-2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}}{c^{4}\left(c^{2} d+e\right) d^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} b \sqrt{-\left(c^{2} d-2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \operatorname{arctanh}\left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(-c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}-2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}}{2 c^{2} e\left(c^{2} d+e\right) d^{2}}
\end{aligned}
$$

Problem 30: Result is not expressed in closed-form.

$$
\int \frac{a+b \operatorname{arcsec}(c x)}{\left(e x^{2}+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 702 leaves, 47 steps):

$$
\begin{aligned}
& -\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}} \\
& -\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{(a+b \operatorname{arcsec}(c x)) \ln \left(1+\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{\mathrm{I} b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}} \\
& -\frac{\mathrm{I} b \text { polylog }\left(2,-\frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{\mathrm{I} b \text { polylog }\left(2, \frac{c\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{4(-d)^{3 / 2} \sqrt{e}}+\frac{-a-b \operatorname{arcsec}(c x)}{4 d\left(-\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)} \\
& +\frac{a+b \operatorname{arcsec}(c x)}{4 d\left(\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}-\frac{b \operatorname{arctanh}\left(\frac{c^{2} d-\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d+e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right)}{4 d^{3 / 2} \sqrt{c^{2} d+e}}-\frac{b \operatorname{arctanh}\left(\frac{c^{2} d+\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d+e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right)}{4 d^{3 / 2 \sqrt{c^{2} d+e}}}
\end{aligned}
$$

Result(type 7, 1747 leaves):

$$
\begin{aligned}
& \frac{c^{2} a x}{2 d\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{a \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{2 d \sqrt{d e}}+\frac{c^{2} b \operatorname{arcsec}(c x) x}{2 d\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{1}{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d} \sqrt{\left.\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}\right)}\right.}{c^{4} d^{4}} \\
& -\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right) e^{2}}{c^{4} d^{4}\left(c^{2} d+e\right)} \\
& -\frac{\mathrm{I} b \sqrt{-\left(c^{2} d-2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \operatorname{arctanh}\left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(-c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}-2 e\right) d}}\right) e}{c^{2}\left(c^{2} d+e\right) d^{3}} \\
& -\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}}{c^{4} d^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)} e}{c^{4} d^{4}\left(c^{2} d+e\right)} \\
& +\frac{\mathrm{I} b \sqrt{-\left(c^{2} d-2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \operatorname{arctanh}\left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(-c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}-2 e\right) d}}\right)}{c^{4} d^{4}} \\
& +\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right)}{2 c^{2} d^{3}} \\
& -\frac{\mathrm{I} b \sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \arctan \left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d}}\right)}{c^{2}\left(c^{2} d+e\right) d^{3}} \\
& -\frac{\mathrm{I} b \sqrt{-\left(c^{2} d-2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \operatorname{arctanh}\left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(-c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}-2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)} e}{c^{4} d^{4}\left(c^{2} d+e\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\mathrm{I} b \sqrt{-\left(c^{2} d-2 \sqrt{e\left(c^{2} d+e\right)}+2 e\right) d} \operatorname{arctanh}\left(\frac{\left(\frac{1}{c x}+\mathrm{I} \sqrt{1-\frac{1}{c^{2} x^{2}}}\right) c d}{\sqrt{\left(-c^{2} d+2 \sqrt{e\left(c^{2} d+e\right)}-2 e\right) d}}\right) \sqrt{e\left(c^{2} d+e\right)}}{2 c^{2}\left(c^{2} d+e\right) d^{3}}
\end{aligned}
$$

Problem 31: Unable to integrate problem.

$$
\int x(a+b \operatorname{arcsec}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 159 leaves, 9 steps):

$$
\frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arcsec}(c x))}{3 e}+\frac{b c d^{3 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right)}{3 e \sqrt{c^{2} x^{2}}}-\frac{b\left(3 c^{2} d+e\right) x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{6 c^{2} \sqrt{e} \sqrt{c^{2} x^{2}}}-\frac{b x \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{6 c \sqrt{c^{2} x^{2}}}
$$

Result (type 8, 21 leaves):

$$
\int x(a+b \operatorname{arcsec}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Problem 34: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arcsec}(c x)) \sqrt{e x^{2}+d}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 286 leaves, 11 steps):

$$
\begin{gathered}
-\frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arcsec}(c x))}{3 d x^{3}}+\frac{2 b c\left(c^{2} d+2 e\right) \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{9 d \sqrt{c^{2} x^{2}}}+\frac{b c \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{9 x^{2} \sqrt{c^{2} x^{2}}} \\
-\frac{2 b c^{2}\left(c^{2} d+2 e\right) x \text { EllipticE }\left(c x, \sqrt{-\frac{e}{c^{2} d}}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{e x^{2}+d}}{9 d \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{1+\frac{e x^{2}}{d}}}
\end{gathered}
$$

$$
+\frac{b\left(c^{2} d+e\right)\left(2 c^{2} d+3 e\right) x \text { EllipticF }\left(c x, \sqrt{-\frac{e}{c^{2} d}}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{1+\frac{e x^{2}}{d}}}{9 d \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{(a+b \operatorname{arcsec}(c x)) \sqrt{e x^{2}+d}}{x^{4}} \mathrm{~d} x
$$

Problem 35: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arcsec}(c x)) \sqrt{e x^{2}+d}}{x^{6}} \mathrm{~d} x
$$

Optimal(type 4, 399 leaves, 12 steps):

$$
\begin{aligned}
& -\frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arcsec}(c x))}{5 d x^{5}}+\frac{2 e\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arcsec}(c x))}{15 d^{2} x^{3}}+\frac{b c\left(e x^{2}+d\right)^{3 / 2} \sqrt{c^{2} x^{2}-1}}{25 d x^{4} \sqrt{c^{2} x^{2}}} \\
& +\frac{b c\left(24 c^{4} d^{2}+19 c^{2} d e-31 e^{2}\right) \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{225 d^{2} \sqrt{c^{2} x^{2}}}+\frac{b c\left(12 c^{2} d-e\right) \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{225 d x^{2} \sqrt{c^{2} x^{2}}} \\
& -\frac{b c^{2}\left(24 c^{4} d^{2}+19 c^{2} d e-31 e^{2}\right) x \text { EllipticE }\left(c x, \sqrt{-\frac{e}{c^{2} d}}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{e x^{2}+d}}{225 d^{2} \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{1+\frac{e x^{2}}{d}}}
\end{aligned}
$$

$$
+\frac{b\left(c^{2} d+e\right)\left(24 c^{4} d^{2}+7 c^{2} d e-30 e^{2}\right) x \text { EllipticF }\left(c x, \sqrt{-\frac{e}{c^{2} d}}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{1+\frac{e x^{2}}{d}}}{225 d^{2} \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{(a+b \operatorname{arcsec}(c x)) \sqrt{e x^{2}+d}}{x^{6}} \mathrm{~d} x
$$

Problem 36: Unable to integrate problem.

$$
\int x\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arcsec}(c x)) \mathrm{d} x
$$

Optimal(type 3, 218 leaves, 10 steps):

$$
\begin{aligned}
& \frac{\left(e x^{2}+d\right)^{5 / 2}(a+b \operatorname{arcsec}(c x))}{5 e}+\frac{b c d^{5 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right)}{5 e \sqrt{c^{2} x^{2}}}-\frac{b\left(15 c^{4} d^{2}+10 c^{2} d e+3 e^{2}\right) x \operatorname{arctanh}\left(\frac{\sqrt{e \sqrt{c^{2} x^{2}-1}}}{c \sqrt{e x^{2}+d}}\right)}{40 c^{4} \sqrt{e} \sqrt{c^{2} x^{2}}} \\
& \quad-\frac{b x\left(e x^{2}+d\right)^{3 / 2} \sqrt{c^{2} x^{2}-1}}{20 c \sqrt{c^{2} x^{2}}}-\frac{b\left(7 c^{2} d+3 e\right) x \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{40 c^{3} \sqrt{c^{2} x^{2}}}
\end{aligned}
$$

Result(type 8, 21 leaves):

$$
\int x\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arcsec}(c x)) \mathrm{d} x
$$

Problem 39: Unable to integrate problem.

$$
\int \frac{x^{5}(a+b \operatorname{arcsec}(c x))}{\sqrt{e x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 271 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{2 d\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arcsec}(c x))}{3 e^{3}}+\frac{\left(e x^{2}+d\right)^{5 / 2}(a+b \operatorname{arcsec}(c x))}{5 e^{3}}+\frac{8 b c d^{5 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right)}{15 e^{3} \sqrt{c^{2} x^{2}}} \\
& -\frac{b\left(45 c^{4} d^{2}-10 c^{2} d e+9 e^{2}\right) x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{120 c^{4} e^{5 / 2} \sqrt{c^{2} x^{2}}}-\frac{b x\left(e x^{2}+d\right)^{3 / 2} \sqrt{c^{2} x^{2}-1}}{20 c e^{2} \sqrt{c^{2} x^{2}}}+\frac{d^{2}(a+b \operatorname{arcsec}(c x)) \sqrt{e x^{2}+d}}{e^{3}}
\end{aligned}
$$

$$
+\frac{b\left(19 c^{2} d-9 e\right) x \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{120 c^{3} e^{2} \sqrt{c^{2} x^{2}}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{x^{5}(a+b \operatorname{arcsec}(c x))}{\sqrt{e x^{2}+d}} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{x(a+b \operatorname{arcsec}(c x))}{\sqrt{e x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 110 leaves, 9 steps):

$$
\frac{b c x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right) \sqrt{d}}{e \sqrt{c^{2} x^{2}}}-\frac{b x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{\sqrt{e \sqrt{c^{2} x^{2}}}}+\frac{(a+b \operatorname{arcsec}(c x)) \sqrt{e x^{2}+d}}{e}
$$

Result(type 8, 21 leaves):

$$
\int \frac{x(a+b \operatorname{arcsec}(c x))}{\sqrt{e x^{2}+d}} \mathrm{~d} x
$$

Problem 41: Unable to integrate problem.

$$
\int \frac{x^{3}(a+b \operatorname{arcsec}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} d x
$$

Optimal(type 3, 133 leaves, 9 steps):

Result(type 8, 23 leaves):

$$
\int \frac{x^{3}(a+b \operatorname{arcsec}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \frac{a+b \operatorname{arcsec}(c x)}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 98 leaves, 5 steps):

$$
\frac{x(a+b \operatorname{arcsec}(c x))}{d \sqrt{e x^{2}+d}}-\frac{b x \text { EllipticF }\left(c x, \sqrt{-\frac{e}{c^{2} d}}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{1+\frac{e x^{2}}{d}}}{d \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{a+b \operatorname{arcsec}(c x)}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int \frac{x^{3}(a+b \operatorname{arcsec}(c x))}{\left(e x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 139 leaves, 7 steps):

$$
\frac{d(a+b \operatorname{arcsec}(c x))}{3 e^{2}\left(e x^{2}+d\right)^{3 / 2}}-\frac{2 b c x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right)}{3 e^{2} \sqrt{d} \sqrt{c^{2} x^{2}}}+\frac{-a-b \operatorname{arcsec}(c x)}{e^{2} \sqrt{e x^{2}+d}}+\frac{b c x \sqrt{c^{2} x^{2}-1}}{3 e\left(c^{2} d+e\right) \sqrt{c^{2} x^{2}} \sqrt{e x^{2}+d}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{x^{3}(a+b \operatorname{arcsec}(c x))}{\left(e x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Test results for the 17 problems in "5.5.2 Inverse secant functions.txt"
Problem 1: Unable to integrate problem.

$$
\int \frac{\operatorname{arcsec}\left(x^{5} a\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 80 leaves, 7 steps):

$$
\frac{\mathrm{I} \operatorname{arcsec}\left(x^{5} a\right)^{2}}{10}-\frac{\operatorname{arcsec}\left(x^{5} a\right) \ln \left(1+\left(\frac{1}{x^{5} a}+\mathrm{I} \sqrt{1-\frac{1}{x^{10} a^{2}}}\right)^{2}\right)}{5}+\frac{\mathrm{Ipolylog}\left(2,-\left(\frac{1}{x^{5} a}+\mathrm{I} \sqrt{1-\frac{1}{x^{10} a^{2}}}\right)^{2}\right)}{10}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{arcsec}\left(x^{5} a\right)}{x} \mathrm{~d} x
$$

Problem 8: Result more than twice size of optimal antiderivative.
$\int x^{4} \operatorname{arcsec}(b x+a) \mathrm{d} x$
Optimal(type 3, 173 leaves, 9 steps):

$$
\begin{aligned}
& \frac{a^{5} \operatorname{arcsec}(b x+a)}{5 b^{5}}+\frac{x^{5} \operatorname{arcsec}(b x+a)}{5}-\frac{\left(40 a^{4}+40 a^{2}+3\right) \operatorname{arctanh}\left(\sqrt{1-\frac{1}{(b x+a)^{2}}}\right)}{40 b^{5}}+\frac{a\left(53 a^{2}+20\right)(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{30 b^{5}} \\
& \quad+\frac{11 a x^{2}(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{60 b^{3}} \frac{x^{3}(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{20 b^{2}}-\frac{\left(58 a^{2}+9\right)(b x+a)^{2} \sqrt{1-\frac{1}{(b x+a)^{2}}}}{120 b^{5}}
\end{aligned}
$$

Result(type 3, 508 leaves):

$$
\begin{aligned}
& -\frac{\left((b x+a)^{2}-1\right) x^{3}}{20 b^{2} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{\sqrt{(b x+a)^{2}-1} a^{5} \arctan \left(\frac{1}{\sqrt{(b x+a)^{2}-1}}\right)}{5 b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{\sqrt{(b x+a)^{2}-1} a^{4} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& -\frac{3\left((b x+a)^{2}-1\right) x}{40 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{\sqrt{(b x+a)^{2}-1} a^{2} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{29\left((b x+a)^{2}-1\right) x a^{2}}{60 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& +\frac{x^{5} \operatorname{arcsec}(b x+a)}{5}+\frac{77\left((b x+a)^{2}-1\right) a^{3}}{60 b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{71\left((b x+a)^{2}-1\right) a}{120 b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& -\frac{3 \sqrt{(b x+a)^{2}-1} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{40 b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{11\left((b x+a)^{2}-1\right) x^{2} a}{60 b^{3} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \operatorname{arcsec}(b x+a) \mathrm{d} x
$$

Optimal(type 3, 135 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{a^{4} \operatorname{arcsec}(b x+a)}{4 b^{4}}+\frac{x^{4} \operatorname{arcsec}(b x+a)}{4}+\frac{a\left(2 a^{2}+1\right) \operatorname{arctanh}\left(\sqrt{1-\frac{1}{(b x+a)^{2}}}\right)}{2 b^{4}}-\frac{\left(17 a^{2}+2\right)(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{12 b^{4}} \\
& -\frac{x^{2}(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{12 b^{2}}+\frac{a(b x+a)^{2} \sqrt{1-\frac{1}{(b x+a)^{2}}}}{3 b^{4}}
\end{aligned}
$$

Result(type 3, 358 leaves):

$$
\begin{aligned}
& \frac{x^{4} \operatorname{arcsec}(b x+a)}{4}-\frac{\left((b x+a)^{2}-1\right) x^{2}}{12 b^{2} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{\sqrt{(b x+a)^{2}-1} a^{4} \arctan \left(\frac{1}{\sqrt{(b x+a)^{2}-1}}\right)}{4}+\frac{\left((b x+a)^{2}-1\right) x a}{4 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& +\frac{\sqrt{(b x+a)^{2}-1} a^{3} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{13\left((b x+a)^{2}-1\right) a^{2}}{3 b^{3} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{\sqrt{(b x+a)^{2}-1} a \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{12 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& -\frac{(b x+a)^{2}-1}{6 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}
\end{aligned}
$$

Problem 12: Unable to integrate problem.

$$
\int \operatorname{arcsec}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 4, 207 leaves, 10 steps):
$\frac{(b x+a) \operatorname{arcsec}(b x+a)^{3}}{b}+\frac{6 \mathrm{I} \operatorname{arcsec}(b x+a)^{2} \arctan \left(\frac{1}{b x+a}+\mathrm{I} \sqrt{1-\frac{1}{(b x+a)^{2}}}\right)}{b}$

$$
\begin{aligned}
& -\frac{6 \mathrm{I} \operatorname{arcsec}(b x+a) \operatorname{polylog}\left(2,-\mathrm{I}\left(\frac{1}{b x+a}+\mathrm{I} \sqrt{1-\frac{1}{(b x+a)^{2}}}\right)\right)}{b}+\frac{6 \mathrm{I} \operatorname{arcsec}(b x+a) \operatorname{polylog}\left(2, \mathrm{I}\left(\frac{1}{b x+a}+\mathrm{I} \sqrt{\left.1-\frac{1}{(b x+a)^{2}}\right)}\right)\right.}{b} \\
& +\frac{6 \operatorname{polylog}\left(3,-\mathrm{I}\left(\frac{1}{b x+a}+\mathrm{I} \sqrt{1-\frac{1}{(b x+a)^{2}}}\right)\right)}{b}-\frac{6 \operatorname{polylog}\left(3, \mathrm{I}\left(\frac{1}{b x+a}+\mathrm{I} \sqrt{1-\frac{1}{(b x+a)^{2}}}\right)\right)}{b}
\end{aligned}
$$

Result(type 8, 10 leaves):
$\int \operatorname{arcsec}(b x+a)^{3} \mathrm{~d} x$

Problem 14: Unable to integrate problem.

$$
\int x^{-1+n} \operatorname{arcsec}\left(a+b x^{n}\right) \mathrm{d} x
$$

Optimal(type 3, 47 leaves, 6 steps):

$$
\frac{\left(a+b x^{n}\right) \operatorname{arcsec}\left(a+b x^{n}\right)}{b n}-\frac{\operatorname{arctanh}\left(\sqrt{1-\frac{1}{\left(a+b x^{n}\right)^{2}}}\right)}{b n}
$$

Result(type 8, 16 leaves):

$$
\int x^{-1+n} \operatorname{arcsec}\left(a+b x^{n}\right) \mathrm{d} x
$$

Problem 15: Unable to integrate problem.

$$
\int \mathrm{e}^{\operatorname{arcsec}(a x)} \mathrm{d} x
$$

Optimal(type 5, 107 leaves, 5 steps):
$-(1+\mathrm{I}) \mathrm{e}^{(1+\mathrm{I}) \operatorname{arcsec}(a x)}$ hypergeom $\left(\left[1, \frac{1}{2}-\frac{\mathrm{I}}{2}\right],\left[\frac{3}{2}-\frac{\mathrm{I}}{2}\right],-\left(\frac{1}{a x}+\mathrm{I} \sqrt{1-\frac{1}{x^{2} a^{2}}}\right)^{2}\right)$

$$
+\frac{(2+2 \mathrm{I}) \mathrm{e}^{(1+\mathrm{I}) \operatorname{arcsec}(a x)} \text { hypergeom }\left(\left[2, \frac{1}{2}-\frac{\mathrm{I}}{2}\right],\left[\frac{3}{2}-\frac{\mathrm{I}}{2}\right],-\left(\frac{1}{a x}+\mathrm{I} \sqrt{1-\frac{1}{x^{2} a^{2}}}\right)^{2}\right)}{a}
$$

Result(type 8, 7 leaves):

$$
\int \mathrm{e}^{\operatorname{arcsec}(a x)} \mathrm{d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{\operatorname{arcsec}(a x)}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 31 leaves, 3 steps):

$$
-\frac{\mathrm{e}^{\operatorname{arcsec}(a x)}}{2 x}+\frac{a \mathrm{e}^{\operatorname{arcsec}(a x)} \sqrt{1-\frac{1}{x^{2} a^{2}}}}{2}
$$

Result(type 8, 11 leaves):

$$
\int \frac{\mathrm{e}^{\operatorname{arcsec}(a x)}}{x^{2}} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{\operatorname{arcsec}(a x)}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 70 leaves, 6 steps):

$$
-\frac{a^{2} \mathrm{e}^{\operatorname{arcsec}(a x)}}{8 x}-\frac{3 a^{3} \mathrm{e}^{\operatorname{arcsec}(a x)} \cos (3 \operatorname{arcsec}(a x))}{40}+\frac{a^{3} \mathrm{e}^{\operatorname{arcsec}(a x)} \sin (3 \operatorname{arcsec}(a x))}{40}+\frac{a^{3} \mathrm{e}^{\operatorname{arcsec}(a x)} \sqrt{1-\frac{1}{x^{2} a^{2}}}}{8}
$$

Result(type 8, 11 leaves):

$$
\int \frac{\mathrm{e}^{\operatorname{arcsec}(a x)}}{x^{4}} \mathrm{~d} x
$$

Summary of Integration Test Results

65 integration problems

A - 34 optimal antiderivatives
B - 11 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 20 unable to integrate problems
E - O integration timeouts

[^0]: Problem 25: Result more than twice size of optimal antiderivative.

